SigmaWay Blog

SigmaWay Blog tries to aggregate original and third party content for the site users. It caters to articles on Process Improvement, Lean Six Sigma, Analytics, Market Intelligence, Training ,IT Services and industries which SigmaWay caters to

Machine Learning vs. Deep Learning

Artificial Intelligence (AI) is reshaping industries, with Machine Learning (ML) and Deep Learning (DL) standing out as its most influential technologies. ML involves algorithms that learn patterns from data to make decisions, such as spam filters identifying unwanted emails based on labeled examples. Its adaptability makes ML widely useful in fields like finance and healthcare, where it powers predictive analytics to forecast trends and outcomes.

Deep Learning, a subset of ML, uses neural networks to automatically extract and learn features from large datasets. This makes it highly effective for complex tasks such as image and speech recognition. For instance, DL enables facial recognition systems to identify individuals with remarkable precision and supports innovations like autonomous vehicles and advanced medical diagnostics.

While ML excels in handling diverse applications with moderate complexity, DL’s computational power is better suited for cutting-edge problems requiring deep insights. Together, these technologies are driving AI’s evolution, transforming industries and expanding the possibilities of automation and innovation.

Rate this blog entry:
243 Hits
0 Comments

The Power of a Click

In the dynamic landscape of digital marketing, understanding user behavior is vital for creating impactful campaigns. User clicks provide a wealth of valuable data, and Machine Learning (ML) acts as a powerful tool to interpret and harness this information. By utilizing ML algorithms, digital marketers can analyze click patterns to develop highly targeted strategies, ensuring maximum efficiency and optimal results.

One of the standout applications of ML in digital marketing is its ability to personalize content recommendations. Through predictive modeling, ML can anticipate what a user is likely to engage with next, enabling marketers to deliver tailored suggestions that align with individual preferences. This not only enhances the user experience but also amplifies the effectiveness of marketing initiatives. Tools like Predictive Analytics further refine this process by analyzing past click data to forecast future user behavior, helping businesses target their audiences with precision.

ML also significantly improves ad optimization and audience segmentation. By examining click behavior, it identifies the most effective ads, ensuring they reach the right audience with maximum impact. Additionally, ML can group users with similar interests based on their behavior, allowing marketers to design personalized campaigns. Notable examples include Netflix recommending shows based on viewing history, Amazon suggesting products based on past activity, and Google Ads displaying highly relevant ads. These applications demonstrate how ML is transforming digital marketing into a smarter, more personalized, and highly efficient domain, helping businesses forge stronger connections with their users.

Rate this blog entry:
225 Hits
0 Comments

Advent of Large Language Models or LLMs

Large Language Models, better known as LLMs, are at the forefront of the ongoing Artificial Intelligence (AI) revolution that is transforming the world of technology. Popular representatives of AI such as OpenAI's ChatGPT and Google's Bard also deploy this astonishing technology, and the term "LLM" is mentioned constantly in discussions, events and keynotes. So, what exactly is an LLM? Let’s explore!

Large Language Models are a type of AI program, and to be more precise, a type of Machine Learning (ML) program. It is built on a neural network model known as transformer model. The model is fed large amounts of data, usually from well curated data sources and datasets found on the internet, and then trained to interpret diverse and complex types of data (including human language). Following this, Deep Learning (DL) is deployed to conduct an analysis of this unstructured data to distinguish between different pieces of input and research data. Through this process, LLMs are able to generate appropriate responses for any problem that they are presented with. 

LLM models are best used as a form of Generative AI (GenAI). GenAI can generate text-based responses to all kinds of problems and even write complex code in a matter of seconds! It also has several other applications such as sentiment analysis, customer service etc. As a technology it is still in its early stages, comprising of several key issues such as bugs and other types of manipulations. Regardless, LLMs are the next big thing in AI today, and are sure to become a staple of tomorrow.

Rate this blog entry:
386 Hits
0 Comments

Random forests: a collection of Decision trees!

In literal sense, a forest is an area full of trees. Likewise, in technical sense, a Random Forest is essentially a collection of Decision Trees. Although both are classification algorithms which are supervised in nature, which one is better to use?

A Decision Tree is built on an entire data set, using all the features/variables while a Random forest randomly (as the name suggests) selects observations/rows and specific features/variables to build several decision trees and then average the results. Each tree “votes” or chooses the  class and the one receiving the most votes by majority is the “winner” or the predicted class.

A Decision tree is comparatively easier to interpret and visualize, works well on large datasets and can handle categorical as well as numerical data. However, choosing a comfortable algorithm for optimal choice at each node and decision trees are also vulnerable to over fitting.

Random Forests come to our rescue in such situations. Since they select samples and the results are aggregated and averaged, they are more robust than decision trees. Random Forests are a strong modelling technique than Decision Trees.

Read more at: https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-algorithm/

Rate this blog entry:
2826 Hits
0 Comments

Decoding the Mystery of Perfect Ads!

Advertisement is one of the major ways through which businesses can attract customers. A lot of money and time is invested in order to create ads. However, these days a helping hand has come for rescue and is successfully able to attract customers by presenting customized ads. Machine Learning Algorithms, Artificial Intelligence and Deep Learning have come into play. With the help of these technologies, customized ads can be created based on the current searches done by customer. For example, you recently searched for “affordable mobile phones”. These learning algorithms tracks it down and soon starts displaying mobile phones ads presented by various companies. Other than that, Data Mining also plays an important role in this. Among various data that is available on world wide web, data mining algorithms browser and stores valuable data. 

Read more about this at https://www.techworm.net/2018/06/how-machine-learning-algorithms-help-businesses-target-their-ads.html

 

Rate this blog entry:
5504 Hits
0 Comments

Most prevalent languages for Machine Learning and data science

Careers in machine learning, Data science, artificial intelligence, deep learning and many more are considered as one of the best choices to pursue. Now these technologies and the related jobs are considered one of the hottest and best jobs today. So, here are the list of top 5 languages prevalent in market for data science, machine learning etc.

1. Python

2. R

3. Java

4. Scala

5. C

Read More at https://www.informationweek.com/big-data/ai-machine-learning/5-top-languages-for-machine-learning-data-science/d/d-id/1332311?

 

Rate this blog entry:
3100 Hits
0 Comments

Finding Data!

Data is very important for various technologies. Whether it be Artificial Intelligence or Machine Learning, Data analysis or Research work, Data is mandatory to implement them. However, the task of finding right data is very tedious and time consuming. One needs to find data that is most appropriate in terms of information available, size and other factors. 

Every day a huge amount is data is generated on internet. To our help there are few open data sources that are free to use. This data can be in raw form which might need further processing. But to start with the process and to get a data set, one could visit below mentioned sites that provides data for free: 

  1. Kaggle
  2. UCI machine learning repository
  3. data.gov

Know more about them at : https://www.technotification.com/2018/04/building-data-science-models.html

 

Rate this blog entry:
4659 Hits
0 Comments

Aiming to Become A Data Scientist? Read This!

Data Sciences is a very vast field and in recent times, there is a high demand of professionals in this field. Dealing with data is not easy. Data sets available with companies are very large and to extract meaningful data is a tough job. Thus, the job of data scientist is becoming very important for decision-making and is based on automation and machine learning. The main role of data scientist is to organize and analyse data. Other than this, data can help in predictions, pattern detection analysis etc. All this can be done the help of some software which is specially designed for the task. The responsibilities of data scientist begin with data collection and ends with decision making on the basis of data.

To know more about the key roles of data scientist, requirements and skills visit: https://www.cio.com/article/3217026/data-science/what-is-a-data-scientist-a-key-data-analytics-role-and-a-lucrative-career.html#tk.cio_rs

 

Rate this blog entry:
4159 Hits
0 Comments

AI Contributing Towards Medicine

Artificial Intelligence is spreading its wings and is coming into rescue in various fields. One such field which comes into rescue for humans is the health care sector. Combination of these two fields can bring great advancement in health care sector. Artificial Intelligence and Machine learning have already come into action in medicine. Following are the top 4 applications:

    1. Diagnosing Diseases: Not all diseases can easily be rectified. This could be time consuming and expensive. Here, various Deep Learning algorithms prove to be a solution. This focus on automatic diagnosis, making diagnosis much cheaper and accessible. 
    2. Developing Drugs Faster: Drug development is a time taking and a tedious task. It involves analytics and various rounds of testing. AI has already aced in speeding up the process.
    3. Personalizing Treatment: Same medical procedure can not be carried out on every patient. Choosing the course of treatment can be a difficult and a great responsibility. Machine Learning can automate this task. It can help in designing the right treatment plan.
    4. Improving Gene Editing: This is a technique that relies on targeting and editing specific location on the DNA. A careful selection needs to be made. Machine Learning models have successfully been able to predict target and effects successfully.

To read more at https://towardsdatascience.com/artificial-intelligence-in-medicine-1fd2748a9f87

 

Rate this blog entry:
4715 Hits
0 Comments

Briefing Data Science

After Artificial Intelligence and Machine Learning, the next most emerging field in todays world is the field of Data Science. It is said to be the cousins of AI and ML and mainly deals with data. It intakes data, uses processes, algorithms and scientific methods to extract knowledge and valuable data from large data sets. This field is need of each and every type of organization. Whether it be business or an IT firm, every organization needs data for improvement. Thus, outcomes from the processing of data are further used for decision making and for improving current functioning.

People often gets confused between Data Science, Data Analytics and Big Data. The key difference between them is that Data Analytics and Big Data are components of Data Science. Data Science extract values from the output of Data Analytics and Big Data to solve problems.
The goal of Data Science is to extract business-focused insights from business. This could help organizations in many ways.

Read more about this topic at: https://www.cio.com/article/3285108/data-science/what-is-data-science-a-method-for-turning-data-into-value.html

Rate this blog entry:
4488 Hits
0 Comments

Myths About Machine Learning

Every day a new problem statements emerges in the field of technology and machine learning proves to be a solution in most cases. These days, we tend to find smart solutions for our problems and machine learning is the backbone for the same. Thus, we can correctly state that Machine Learning has already invaded in our lives in some way or another.

However, with the emergence of machine learning, misunderstanding and misconceptions associated with it enters the field. There are few common myths about what and what not machine learning can do. Few of them are mentioned below:

  1. Machine Learning is AI
  2. All data is useful
  3. Anyone can build machine learning system
  4. Reinforcement learning is ready to use
  5. Machine learning will replace people

One could achieve better results if he avoids these common myths.

To read more about this, visit: https://www.cio.com/article/3263776/artificial-intelligence/machine-learning-myths.html?upd=1531678835984

 

Rate this blog entry:
3132 Hits
0 Comments

Interested in AI? Have A Career in It!

With advancement of technology, one field that will be highly demanded in upcoming years is turning up to be Artificial Intelligence. It is bringing changes that is transforming the world. AI comes with its sub streams such as data mining, machine learning, neural networks etc. This field has already become the area of interest for many programmers and developers. However, still there are not many developers in this stream. 

Schools, Colleges and Organizations have started providing courses on AI. It is one of the best career option. But Artificial Intelligence is just a main stream. One should have a clear mind about his career opportunities. Following are few options you can opt if interested in Artificial Intelligence and want to have a career towards it:

  1. A.I. Research Scholar
  2. A.I. based Software Developer
  3. Data Scientist
  4. Machine Learning Engineer
  5. Automation Engineer

To know more about them visit: https://www.technotification.com/2018/04/top-5-career-opportunities-in-artificial-intelligence.html

 

Rate this blog entry:
3173 Hits
0 Comments

Prevention in Data Sciences

The buzzwords in technology are no new to someone. Whether it be Artificial Intelligence, Machine Learning, Data Sciences or Analytics, each of these are invading in our lives promising us better future. However, it is believed that expertise interested in data sciences are not widely spread. Data Sciences is a field that can improve business, can help in other technological fields, can help in decision making and more. 

It is rightly said that prevention is better than cure. A wrong step in data sciences can affect the decisions and the results. One should avoid the following mistakes while dealing with data:

  1. Assuming your data is ready to use and all you need
  2. Not exploring your data set before starting work
  3. Not using control group to test your new data model in action
  4. Starting with targets rather than hypotheses
  5. Automating without monitoring the final outcome

To study mistakes like these read https://www.cio.com/article/3271127/data-science/12-data-science-mistakes-to-avoid.html?nsdr=true

 

Rate this blog entry:
3697 Hits
0 Comments

A Must for Machine Learning Programmers!

Machine Learning is an ongoing trend in the field of technology. However, there are only few machine learning programmers available right now. For beginners who are eager to learn and work on machine learning must work on algorithms. With machine learning algorithms, there is no need of human intervention.  There are different algorithms which will work for you. 

There are basically three types of algorithms:

  1. Supervised Algorithms: which uses labelled datasets for training algorithms
  2. Unsupervised Algorithms: which uses unstructured datasets for results
  3. Reinforcement Learning: it uses feedbacks in order to reinforce a behavior

There are top 10 algorithms of machine learning that are must known for machine learning programmers:

  1. Linear regression
  2. Logistic regression
  3. Classification and regression tree
  4. Naïve bayes
  5. KNN
  6. Apriori
  7. K-means
  8. Principle Component Analysis
  9. Random Forest
  10. AdaBoost

Know more about them at https://www.technotification.com/2018/05/top-10-ml-algorithms.html 

 

Rate this blog entry:
2788 Hits
0 Comments

A Look into Future – Introduction to Predictive Analysis

In this world of competition, companies need to take advantage of available data and take a look about what might happen in future. Predictive Analysis is one such branch of Data Analytics that aims to make predictions about future outcomes using various algorithms and other data analytics tools. Methods like data mining, big data, machine learning are back bone of Predictive Analysis and organizations are able to decode patterns and relations which helps them to detect risk and opportunity. Financial Services, Law Enforcements, Automotive, Healthcare are few fields which have already adapted this technology. 

To know more visit: https://www-cio-com.cdn.ampproject.org/c/s/www.cio.com/article/3273114/predictive-analytics/what-is-predictive-analytics-transforming-data-into-future-insights.amp.html

 

Rate this blog entry:
3924 Hits
0 Comments

Classification using ML

Classification of data is very important in many organizations. They can be used to make decisions. But the task of classification can be very tedious. Now imagine a machine doing this job. Classification using machine learning is with the help of supervised learning approach and algorithms. Machine learns from the data input given to it and with the help of this learning, it classifies new observation.

For example, we want to check number of male and female members in an organization. Here we can train our machine to do this classification. 

Classification using machine learning is one of the trending technologies being used in various fields. It has many applications in many domains other than IT.

Various algorithms can be used to implement classification. There are two types of learners in classification – 
Lazy Learners - which simply store the training data and wait until a testing data appears. They classify the data based on most related data.
Eager Learners – that construct a classification model based on given training data.

Different classification algorithms are – Decision Tree, Naive Bayes, Artificial Neural Networks, K-nearest neighbor.

Read more about them and various evolution methods at https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623

 

Rate this blog entry:
3816 Hits
0 Comments

Working with Machine Learning

Artificial Intelligence, Machine Learning and Deep Learning are relatively newer technologies invading the fields of information technology, business etc. Though developers are walking towards this era, currently the number of experts is relatively less. The company often makes mistakes by starting up with the technologies instead of focusing on business needs. They often make mistakes by assigning out of domain work to some. For e.g. Hiring data scientists and asking them to build something interested from given database. Rather than a team must be formed of product managers, data engineers, data scientist and DevOps engineers.A team of four will be a kick start to improve our process and giving better results. Now everybody has an opportunity to improve the models, optimise the deployment and scale the business. 

Talking about ML, many projects fail due to complex structures. This could occur because of working on wrong problem, to having wrong data, failing to build a model or failing to deploy it correctly. Read more at: https://medium.com/@guyernest/the-flywheel-of-machine-learning-systems-50aa6d992382

Rate this blog entry:
4134 Hits
0 Comments

Easy Searching With ML

Internet is a vast place where one could get and post information globally. Many search engines help you to find what you want using different search algorithms. Ever since the first search algorithm was discovered, many new searching algorithms are being invented and used to make searching process easier. However, there are times when text-based searching becomes really exhausting. Take an example of flower. You are very fascinated by a flower you saw in wilds and is very curious to know about it. You start searching about it using it properties like colour of petals, number of petals, description of leaves etc. This would be very tedious and still there is no surety whether you will get results or not. 

Now imagine for searching with the help of picture. You just click a picture and rest will be done for you. This is known as Visual Searching and to achieve that Machine Learning is used. This type of searching can be extensively used in various domains. Initially a large amount of dataset will be required to train your machine. However, by using the concept of neural networks, this could be achieved and used. Read more at: 

Read more about it at https://medium.com/gsi-technology/ml-in-visual-search-part-i-d54cf4f2b509

 

Rate this blog entry:
3475 Hits
0 Comments

Latest development of Artificial Intelligence

Researchers at MIT have integrated AI with Radio Waves for visualizing people on the other side of the wall. While it sounds like the kind of technology a SWAT team would love to have before kicking through a door, it’s already been used in a surprising way—to monitor the movements of Parkinson’s patients in their homes. The radio signals that they use are very similar to Wi-Fi but a little less powerful. The technology  depicts the people in the scene as skeleton-like stick figures, and can show them moving in real time as they do normal activities, like walk or sit down. But how does it work? Find out at:

https://www.popsci.com/see-through-walls-artificial-intelligence

 

Rate this blog entry:
3249 Hits
0 Comments

Let Machine Learn Using SVM!

Machine Learning is one of those technologies which have invaded in our lives to make it better. Without any doubt one can say that even though machine learning is in its initial phase, it has already become a part in our 24/7 running lives. Set of algorithms to use data, learn from it and then forecast future trends for that topic is expanding day by day.

Machine Learning and Data Sciences are often used together in order to predict future from varied data results available with us. One of the famous algorithm used in this field is SVM or Support Vector Machine which can be used for both regression and classification task. It uses the concept of hyperplanes and other mathematical functions in order to produce significant accuracy with less computation power. SVM has already proved itself in text categorization, image recognition, and in bioinformatics and now working in other.

To know more about how SVM works visit : https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

 

Rate this blog entry:
3448 Hits
0 Comments
Sign up for our newsletter

Follow us